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Invariant numerical methods
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SUMMARY

The discretization of partial differential equations can produce numerical errors, and in particular symmetry
errors. Typically the symmetry is fitted into the numerical method based on the relative merits of physically
aligning the mesh, solving in the natural coordinate frame or modifying the truncation error. In this
paper we will consider two alternative approaches developed from capturing the underlying symmetries,
inherent in the partial differential equations, in the numerical method. The invariant numerical methods are
developed from the extension of Lie group theory to discretized equations using discrete invariants and the
technique of invariantization for the heat equation. Their performances against more traditional schemes
will be presented. q British Crown Copyright 2008/MOD. Reproduced with permission. Published by
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The discretization of partial differential equations can produce inaccuracies, and in particular
symmetry errors. Typically the symmetry is fitted into the numerical method based on three
approaches. The first is to align the mesh with the underlying symmetry and adapt the numerical
method accordingly. Examples of this type of approach are given by Caramana and Whalen [1]
and Margolin and Shashkov [2]. A second approach is to use the natural coordinate frame and to
use a coordinate transformation from physical to computational space. For this type of strategy
the particular symmetry is contained within the Jacobian for the transformation and is embedded
in the Geometric Conservation Law [3]. Finally, the third technique is to modify the numerical
method so that the asymmetries inherent within the truncation terms are reduced or eliminated [4].
Partial differential equations remain unchanged when certain transformations are performed; these
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symmetries leave the equations invariant after a given transformation. However, in general the
discretized equations do not preserve these symmetries. There is a clear connection between the
symmetries that the computational scientist wishes to preserve and those that leave the partial
differential equations invariant. Lie group theory is a general way of determining these symmetries
[5] and has been used to find analytic solutions to the radiation hydrodynamics equations [6] and
Inertial Confined Fusion [7]. The extension to discretized equations has been considered by many
authors, particularly from the Geometric Integration community, and it is recommended that the
reader consult the review article by Levi and Winternitz [8] for an in depth discussion. In this paper
we consider two different type of invariant numerical method§ for the linear heat equation. The first
approach was based on the scheme by Bakirova et al. [11] in terms of discrete invariants. One of
the main weaknesses of this approach is the problem of how to assemble the invariants into a stable
and accurate numerical method. The second approach was based on the invariantization scheme by
Kim [12]. This technique stems from the concept of moving frames, developed by Fels and Olver
[13], where an existing numerical scheme is invariantized to carry symmetry structures of the partial
differential equations. For a given numerical method with known stability and consistency proper-
ties, the invariantization process adds invariant properties in a way that is more intuitive than the first
approach.

In the paper we first describe the heat equation and the type of solutions we wish to solve
for. We next go onto describe the two invariant numerical methods and the traditional schemes
we will use. Next we will present some results. At each stage comparisons are made against
results from the more traditional schemes. Finally, a number of conclusions are drawn from this
work.

2. LINEAR HEAT EQUATION

We consider the linear heat equation with unit viscosity �u/�t=�2u/�x2, where u=u(x, t) is the
dependent variable and x and t are the independent variables. This equation admits six point-wise
symmetries and one infinite dimensional symmetry [5], from which it is possible to derive invariant
solutions. However, in general these solutions represent a subclass of a wider set of solutions that
are non-invariant. In this paper we will consider the performance of the different numerical methods
for the Galilean invariant solution u(x, t)=exp[−x2/(4(t+�))]/√(t+�), where u(x→±∞, t)
=0, and for the non-invariant solution u(x, t)=sin(�x)exp(−t�2)+�, where u(x=0, t)=� and
u(x=1, t)=�.

3. NUMERICAL METHODS

Our first approach uses the Bakirova invariant scheme (BIS) based on discrete invariants with
invariance built into its heart. It is an explicit scheme for the solution and trajectory of the mesh

§As an alternative description these methods will be known as SYNChronized numerical methods [9, 10] (SYmmetries
of the partial differential equations are numerically captured).
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points coupled to changes to the dependent variable. The scheme takes the form,
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where the mesh spacings at the nth time level are given by hni− = xni −xni−1, h
n
i+ = xni+1−xni and

the change in node position over the course of a time-step �n is given by �x= xn+1
i −xni . The

mesh stencil used for the scheme is illustrated in Figure 1. In general the method is O(�n,hni+h
n
i−)

accurate (for small mesh distortions) but has some special properties when used with the Galilean
invariant solution. We will discuss this further in the next section. Owing to space limitations it is
recommended that the reader consult the paper by Bakirova for more information. For this work
we also developed a predictor corrector¶ version of this scheme (pcBIS) to improve its temporal
accuracy. Our second approach uses the invariantization of the forward in time centred scheme
(IFTCS) based on the work by Kim. It is O(�,h2) accurate and takes the form,
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Unlike the BIS method the mesh remains fixed. For convenience we also construct a predictor
corrector version of this scheme (pcIFTCS) to improve temporal accuracy. We consider two
traditional numerical methods. For the first we use the forward in time centred scheme (FTCS)
given by,

un+1
i =uni +�(uni+1+uni−1−2uni )/h

2 (3)

Figure 1. Stencil used in the Bakirova scheme.

¶Half time-step predictor followed by full time-step corrector.
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As shown by Bakirova this scheme does not preserve Galilean invariant, but like the BIS method
it is O(�,h2) accurate. For improved temporal accuracy we use a predictor corrector version of
the FTCS method (pcFTCS) with O(�2,h2)+O(�h2) accuracy.

4. RESULTS

In all presented figures log scales were used. The error is taken to be an average over all spatial
points defined by |Error|=(1/N )

∑N
i=1 |uni −ua(xni , tn)|, where ua(xni , tn) is the analytic solution.

We first consider the Galilean invariant solution with �=1, x ∈[−10,10] and t ∈[0,0.1]. We
consider the effect on numerical error of increased number of time-steps �t within a fixed temporal
interval and for fixed spatial resolution �x . We consider an initial spatial resolution of �x=0.2
and initial time-step �t=�x2/2 with results illustrated in Figure 2. It is observed that there is
a discontinuity in the error for both the FTCS and IFTCS methods. This occurs when the time-
step drops to the point when it is a third of its initial value, and corresponds to a reduction of
spatial error from O(h2) to O(h4). For this test the best scheme is the BIS method because it
can be shown that the scheme has machine order accuracy for the invariant solution. However,
it is observed that the error is slowly increasing (due to roundoff error) but remains significantly
better than the other methods. It is also noted that the invariance properties of the BIS method are
lost when the pcBIS method was used. However, the pcBIS has better than first-order temporal
accuracy because the error continues to decrease with increased number of time-steps. For all other
schemes the errors begin to converge to some constant value, revealing the first-order temporal
accuracy of the schemes. From this test it is noted that the highest errors are from the IFTCS
and pcIFTCS methods. The invariantization process has had a negative effect on the FTCS and
pcFTCS approaches. We now consider the overall convergence rate for all schemes by fixing the
time-step control to be �t=�x2/2 (upper bound used in FTCS) with the results illustrated in
Figure 3. The BIS is the best overall scheme in terms of error but it slowly increases with finer
resolution. All other schemes are second-order accurate and converging. It is observed that the
errors for the FTCS, IFTCS and pcBIS methods are very close to one another, and that the errors
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Figure 2. Effect of increased number of smaller time-steps on numerical error for invariant solution.
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Figure 3. Overall convergence rate for invariant solution.

Table I. Relative computational cost for the different schemes.

Equation N Time FTCS pcFTCS BIS pcBIS IFTCS pcIFTCS

(t+�)−1/2 exp(−x2/(4(t+�))) 400 1.0 1.0 1.86 19.1 36.4 10.5 19.4
sin(�x)exp(−t�2)+� 400 0.1 1.0 1.68 22.9 48.5 5.1 9.8

for the pcFTCS and pcIFTCS methods are also very close to one another. It is observed that the
latter has lower overall error than the former. It is clear that the invariantization process has had
a neutral affect on the FTCS and pcFTCS approaches. In terms of relative computational cost,
presented in Table I, the BIS method offers the best accuracy, but at a higher cost, with respect to
the FTCS method. The invariantization schemes do not offer significant improvements in accuracy
for a given cost with respect to the traditional methods.

We now consider the non-invariant solution with x ∈[0,1] and t ∈[0,1.0]. It is observed that for
the BIS and pcBIS methods, u(x, t) must be greater than zero. This imposes a severe restriction
on their overall applicability. There are less issues with the invariantization schemes provided it
is restricted to one point, such as at the boundary. For convenience we set �=16/� to guarantee
u(x, t)>0. As before we consider the effect of time-stepping �t for a given spatial resolution
�x=0.01. These results are illustrated in Figure 4. Again it is observed that there is a discontinuity
in the error for the FTCS and IFTCS methods, but it is much sharper. It is also observed that
the BIS method also suffers from a similar dip at the same point. Overall the methods converge
to similar values with the IFTCS performing the best. Therefore, the BIS and pcBIS approaches
do not offer any significant benefits with respect to other methods. We now consider the overall
convergence rate for all schemes by fixing the time-step control to be �t=�x2/2 with the results
illustrated in Figure 5. All schemes are second-order accurate and converging, with the worse
being the FTCS method and best the pcFTCS method in terms of overall error. All other methods
are in between. Therefore, the traditional pcFTCS method outperforms the invariant methods in
terms of accuracy and cost.
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Figure 4. Effect of increased number of smaller time-steps on numerical error for non-invariant solution.
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Figure 5. Overall convergence rate for non-invariant solution.

5. CONCLUSIONS

In this paper we have presented results for two different invariant numerical methods and compared
them against two traditional numerical methods. For the invariant solution considered the BIS
method outperforms all other methods in terms of numerical accuracy. For this problem the
invariantization schemes do not offer any significant improvements in accuracy for a given cost
with respect to the traditional methods. For the non-invariant solution, the traditional pcFTCS
method outperforms the invariant methods in terms of accuracy and cost. For this type of problem,
the BIS and pcBIS were found to be ill defined for regions where u(x, t)=0. This presents a severe
restriction on their overall applicability. For the invariantization schemes provided u(x, t)=0 is
restricted to the boundaries this will not effect their applicability.
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